Vapor Intrusion Mitigation Measures at the Former Bethlehem Steel Plant

William Ahlert, PhD HDR Engineering, Inc.

Bethlehem Steel Plant, Bethlehem, Pa.

 The Site was owned and operated by Bethlehem Steel Corporation from the late 1800s through the late 1990s.

Site History

- May 2004 LVIP purchases ~1,100 acres of the Bethlehem Plant
- Redevelopment plans include
 - Manufacturing
 - High-tech operations
 - Warehousing
 - Distribution
 - Office space

Slag Bank 3

- 47 Acres
- Up to 40 feet of fill
 - Slag
 - C&D debris
 - Coking Residuals
- Scrap metal sorting and storage
- Up to 40 feet of fill

Crystal Lake

- Un-lined surface impoundments
- Operated from 1950s
- Closed by filling with blast furnace and BOF slag in 1978

Systematic Site Characterization

- Passive soil gas sampling utilizing GoreTM modules
- Targeted active soil gas sampling
- Test Trenching

Passive Soil Gas Sampling

- 285 Gore™Modules
- Measures soil gas mass in vapor phase
- ColorGradientMaps

Active Soil Gas Sampling

- 21 Sampling Locations
- Nested wells at 5,15, and 30 feet BGS
- 2 Rounds of soil gas
- Summa Samples
- TO-15 (w/ Naphthalene)

Test Trenches

- 16 Test Trenches
- ~3,800 linear feet of trenches
- 93 Soil Samples
- Full TAL/TCL Analysis

Site Characterization Results Soils

- Compounds above the PADEP MSC_{Soil}:
 - BTEX
 - PAHs
 - Metals
 - Antimony, iron, lead, selenium, mercury

Site Characterization Results Soil Gas

- Primary compounds above the PADEP MSC_{sg}:
 - Benzene
 - 1,200 32,000,000 μg/m³
 - Naphthalene
 - 1,300 380,000 μg/m³
 - 1,2,4- and 1,3,5-TMB
 - 3,400 59,000 μg/m³

Soil Gas Risk Analysis

- J&E Model
- Combination of site specific and PADEP default input parameters
- Health risk exceeds the applicable HQ/IR in the southern portion of the Site

Proposed Development

- 720,000 ft² warehousing / distribution center
- Paved driveways, parking, truck loading areas
- Rail spur
- Lined bioretention areas

Cleanup Approach

Soil:

- Soil ManagementPlan / On-site Reuse
- Pathway Elimination
 - Capping
 - Deed Restriction

Cleanup Approach

Soil Gas:

- Vapor MitigationSystem
- Capping to reduce infiltration
- Indicator barrier
- Deed Restriction

Vapor Mitigation System Components

- Vapor barrier membrane
- Vapor collection layer
- Sub-slab depressurization

Vapor Barrier Membrane

- Vapor Block Plus 20mil (VBP-20)
 - 20 200 times more impermeable to VOCs than polyethylene
 - Exceeds ASTM 1745
- Geotextile Cushion

Vapor Collection Layer

- 6" Clean course aggregate
 - ½" to 1" diameter
 - <10% passing ½-in sieve</p>
 - 50% free void space
- 4" Diameter perforated PVC pipe
 - Ten ¾-inch holes per foot
- Horizontal vent pipe

Sub-Slab Depressurization

- Powered exhaust fans
 - Installed in-line with vertical pipe run
 - Draws air from vapor collection layer and vents above roofline

Building size

- One 4-ft. x 4-ft. x 8-in. suction pit or 240 linear feet of perforated PVC pipe per 100,000 ft² of building.
- Fan Selection
 - Low Pressure/High Flow vs. High Pressure/Low Flow
 - For large buildings use in-line duct fans with a flowrate of 500-600 cfm @ 0" static pressure

Fan Discharge

- Terminate at least 12 inches above roofline
- Terminate at least 10 feet from windows or openings
- Terminate at least 10 feet from adjacentbuildings

- Condensation and GW Interference
 - Pitch horizontal pipe runs
 - Install CondensateBypass
 - Elevate Fan

- Gauges and Alarms
 - Manometer
 - Magnehelic
 - Audible/Visual Alarm

- Joints, seams, and penetrations
 - Seal at wall joints
 - Overlap and tape seams
 - Cuff and/or tape penetrations

Confirmation Sampling

Confirm sub-slab negative pressure field

OR

- IAQ Monitoring
 - Perform at least 2weeks after systemstartup
 - Possible background interference

Operation and Maintenance

- Monthly Inspection
 - Pressure gauges
 - Vent pipes
 - Alarm
- Annual Inspection
 - Fan bearings
 - Discharge locations
 - HVAC system
 - Floor slab

Does it really cost that much?

- Sub-slab aggregate drainage beds are installed in most areas of the U.S.
- Building code typically requires moisture barrier
- Radon pumps cost about the same as a light bulb to operate
- Incremental installation cost can be as little a \$1.00/sf

References

- Interstate Technology Regulatory Council. Vapor Intrusion Pathway: A Practical Guideline. January 2007.
- Massachusetts Department of Environmental Protection, Guidelines for the Design, Installation, and Operation of Sub-Slab Depressurization Systems, December 1995.
- New Jersey Department of Environmental Protection. Vapor Intrusion Guidance. October 2005.
- New York State Department of Health. Guidance for Evaluating Soil Vapor Intrusion in the State of New York. October 2006.
- Pennsylvania Department of Environmental Protection. Land Recycling Program Technical Guidance Manual – Section IV.A.4.
 Vapor Intrusion into Buildings from Groundwater and Soil Under the Act 2 Statewide Health Standard. January 2004.
- United States Environmental Protection Agency. Radon Prevention in the Design and Construction of Schools and Other Large Buildings. June 1994.